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Abstract

This paper describes the analyses of the nonlinear vibrations and dynamic stability of viscoelastic orthotropic plates. The

models are based on the Kirchhoff–Love (K.L.) hypothesis and Reissner–Mindlin (R.M.) generalized theory (with the

incorporation of shear deformation and rotatory inertia) in geometrically nonlinear statements. It provides justification for

the choice of the weakly singular Koltunov–Rzhanitsyn type kernel, with three rheological parameters. In addition, the

implication of each relaxation kernel parameter has been studied. To solve problems of viscoelastic systems with weakly

singular kernels of relaxation, a numerical method has been used, based on quadrature formulae. With a combination of

the Bubnov–Galerkin and the presented method, problems of nonlinear vibrations and dynamic stability in viscoelastic

orthotropic rectangular plates have been solved, according to the K.L. and R.M. hypotheses. A comparison of the results

obtained via these theories is also presented. In all problems, the convergence of the Bubnov–Galerkin method has been

investigated. The implications of material viscoelasticity on vibration and dynamic stability are presented graphically.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

With increasing industrial development, the mechanics of composite materials has made remarkable
progress. Interest in problems of deformation, durability, vibrations, and dynamic stability of plates and shells
made of composite material is prompted by the fact that they are the main load-bearing elements in
aeronautical and missile engineering, automobiles, pipelines, etc. The application of advanced composite
materials in the engineering and designing of strong, light and reliable elements requires improvements in the
mechanical models of body deformation and the development of mathematical models for its calculation,
taking into account the actual properties of the construction materials. Therefore, the development of efficient
algorithms for solving nonlinear problems on vibrations and dynamic stability of structures manufactured
from composite materials constitutes an urgent issue. According to many experimental and fundamental
investigations, the majority of composite materials feature distinct viscoelastic properties [1–6].
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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The strength of the structures made from modern composite materials is substantially determined by
transverse shear deformations. The classical theory of shells neglects these effects, which now adds new
impetus to the development of the general theory of shells. The main idea is to represent displacements or
strains in a shell using a series: the approaches differ in the type of expansions. However, in practice, methods
based on hypotheses on the distribution of shears or strains across the wall thickness have become popular.
Together with the K.L. classical hypotheses, the R.M. model is widely recognized [7–10]. It should also be
noted that, although the K.L. model allows accurate solutions to a number of practical problems, the
solutions in most cases are not sufficiently comprehensive [11]. Viscoelastic plates made of composite materials
having an anisotropic structure have been described previously [12–16].

Various studies [17–28] have been devoted to the solution of elastic structural (isotropic cases [17–26]
and orthotropic cases [27,28]) problems, within these theories (K.L. [18–25] and R.M. [17,26–28]). Even
if the problems were solved in the viscoelastic formulation, in many cases the viscoelastic characteristics
of the material were only taken into account in a restricted context [5,6,12–16,29–38]. In these cases, the
presence of viscoelastic properties of a material, or the Voight model, [15,29,30,38] was used, or for kernels
of a relaxation exponential kernels were applied [5,6,12–14,16,31–37]. Actually, mathematical models
of problems of viscoelastic systems based on these assumptions cannot describe real processes in
constructions and the influence of dynamic loadings [3,4]. The lack of assumptions leads to incorrect
approximation of relaxation and creep processes in the initial stage of deformation. The choice of assumptions
should not be casually undertaken. In cases where a similar problem is solved in a linear statement, the
decision is reduced to the application of various integrated transformations, e.g. Laplace, Laplace–Carson,
etc. [12–14,16,31,37]. If they are solved in a nonlinear statement, it can be obtained as the solution of a
system of integro-differential equations, where, by way of differentiation, it may be reduced to the solution
of ordinary differential equations, which in most cases are solved by the known numerical method
of Runge–Kutta [5,6,29,30,32]. At present, the existing methods do not allow the resolution of
problems involving weakly singular kernels of the Koltunov, Rzhanitsyn, Abel and Rabotnov types, among
others [3,4].

Thanks to the numerical method [39,40] developed by Kh. Eshmatov on the basis of quadrature rules,
it is now possible to solve the system of nonlinear integro-differential equations with weakly singular
kernels of the Koltunov–Rzhanitsyn, Abel and Rabotnov types. This method provides results of a
reasonably high accuracy and is universal. It enables the resolution of a wide class of dynamic problems
of the theory of viscoelasticity and is economical from the point of view of computer time [40]. Based on this
method, a great number of numerical results have been obtained agreeing well with experimental predictions
[41–44].

It is worth noting that, in the system of integro-differential equations, when we have to solve problems
involving the dynamics of viscoelastic systems, only one kernel of relaxation with three various rheological
parameters of viscosity is involved, whereas in the orthotropic case, within the K.L. hypotheses, five various
kernels with 15 rheological parameters are involved. For the system of equations describing the process
according to the R.M. theory, in the case of orthotropy, seven kernels with 21 rheological parameters are
involved, leading to cumbersome calculations.

The purpose of this work is the study of nonlinear vibrations and the dynamic stability of viscoelastic
orthotropic plates, via the various theories, and to determine the validity of these theories when used to solve
realistic problems in the dynamics of viscoelastic systems.
2. Nonlinear vibration of viscoelastic orthotropic plate within the Kirchhoff–Love and Reissner–Mindlin

hypotheses

To construct the mathematical model of a problem on the nonlinear vibration of a viscoelastic orthotropic
plate in geometrically nonlinear formulation by means of the K.L. hypotheses, the constitutive equations are
used, relating the stresses sx, sy, txy with the strains ex, ey, gxy as [1,3]

sx ¼ B11 1� R�11
� �

�x þ B12 1� R�12
� �

�y; x2y; 122ð Þ; txy ¼ 2B 1� R�ð Þgxy, (1)
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where Bij and B are elastic constants, R�ij and R� are integral operators with kernels of relaxation Rij(t) and
R(t), respectively, i ¼ 1, 2; j ¼ 1, 2:

R�j ¼
Z t

0

Rðt� tÞjðtÞdt; R�ijj ¼
Z t

0

Rijðt� tÞjðtÞdt; i; j ¼ 1; 2,

B11 ¼
E1

1� m12m21
; B22 ¼

E2

1� m12m21
; B12 ¼ B21 ¼ m12B22 ¼ m21B11; B ¼

G

2
.

Here, E1, E2 are the moduli of elasticity in the direction of axes x and y; G is the shear modulus; m12, m21 are
Poisson’s ratios; and hereafter, the symbol ðx2yÞ shows that all the remaining equations, not explicitly
written, are obtained by circular substitution of indices.

We shall take into account the relationship between the strains in the median surface ex, ey, gxy and
displacements u, v, w in the directions x, y, z also including the geometric imperfections, written by considering
the von Karman type of geometric nonlinearity, in the form [11,23,24]:

�x ¼
qu

qx
þ

1

2

qw

qx

� �2

�
qw0

qx

� �2
" #

; �y ¼
qv

qy
þ

1

2

qw

qy

� �2

�
qw0

qy

� �2
" #

,

gxy ¼
qu

qy
þ

qv

qx
þ

qw

qx

qw

qy
�

qw0

qx

qw0

qy
; ð2Þ

where w0 ¼ w0ðx; yÞ is associated with the initial geometric imperfection of the plate.
We express the bending and twisting moments of the element of the plate as follows [40–43]:

Mx ¼ �
h3

12
B11 1� R�11
� � q2ðw� w0Þ

qx2
þ B12 1� R�12

� � q2ðw� w0Þ

qy2

� �
; x2y; 122ð Þ,

H ¼ �
Bh3

3
1� R�ð Þ

q2 w� w0ð Þ

qx qy
; ð3Þ

where h is the thickness of a plate.
When deriving the equations of motion of the element of a viscoelastic plate, we shall proceed from

equations [11,23,24]:

qsx

qx
þ

qtxy

qy
� r

q2u
qt2
¼ 0;

qtxy

qx
þ

qsy

qy
� r

q2v

qt2
¼ 0,

q

h
þ

1

h

q2Mx

qx2
þ 2

q2H

qx qy
þ

q2My

qy2

 !
þ

q
qx

sx
qw

qx
þ txy

qw

qy

� �

þ
q
qy

sy
qw

qy
þ txy

qw

qx

� �
� r

q2w
qt2
¼ 0, ð4Þ

where q is the external shearing load, and r, the density of material structure.
Substituting Eqs. (1) and (3) into Eq. (4), we have

B11 1� R�11
� � q�x

qx
þ B12 1� R�12

� � q�y

qx
þ 2B 1� R�ð Þ

qgxy

qy
� r

q2u

qt2
¼ 0,

B22 1� R�22
� � q�y

qy
þ B21 1� R�21

� � q�x

qy
þ 2B 1� R�ð Þ

qgxy

qx
� r

q2v

qt2
¼ 0,

h2

12
B11 1� R�11
� � q4ðw� w0Þ

qx4
þ 8B 1� R�ð Þ þ B12 1� R�12

� �
þ B21 1� R�21

� �� 	


�
q4ðw� w0Þ

qx2 qy2
þ B22 1� R�22

� � q4ðw� w0Þ

qy4

�
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�
q
qx

qw

qx
B11 1� R�11
� �

�x þ B12 1� R�12
� �

�y

� 	
þ 2B

qw

qy
1� R�ð Þgxy


 �

�
q
qy

qw

qy
B22 1� R�22
� �

�y þ B21 1� R�21
� �

�x
� 	

þ 2B
qw

qx
1� R�ð Þgxy


 �

�
q

h
þ r

q2w

qt2
¼ 0, ð5Þ

where ex, ey, gxy are provided by Eq. (2). This is the system of nonlinear integro-differential equations of
motion of viscoelastic plates in the displacements u, v and w, from which one is able to derive equations of
motion of viscoelastic plates made of an isotropic material.

Mathematical models for nonlinear vibrations of viscoelastic orthotropic plates, based on the K.L.
hypothesis, have been described previously. This model allows reasonably accurate solutions to be obtained
for a number of practical problems. In most cases, nevertheless, these models are not sufficiently
comprehensive [11]. This is the case when considering viscoelastic plates made of composite material having
an orthotropic structure. Thus, the necessity to identify the limits of application of the K.L. hypothesis for
dynamic problems involving nonlinear vibrations and dynamic stability of viscoelastic orthotropic plates in
geometrically nonlinear formulation is evident. Therefore, the mathematical model according to the R.M.
generalized theory is considered, taking into account the shear deformations and rotatory inertia [7,8]. In this
case, the constitutive relationships between the stresses sx, sy, txy, txz, tyz and strains ex, ey, gxy, gxz, gyz are
expressed as

sx ¼ B11 1� R�11
� �

�x þ B12 1� R�12
� �

�y; ðx2y; 122Þ,

txy ¼ 2B 1� R�ð Þgxy; txz ¼ 2B13 1� R�13
� �

gxz; ðx2y; 122Þ, ð6Þ

where Bij and B are elastic constants, and R�ij and R� are integral operators with kernels of relaxation Rij(t) and
R(t), respectively, i ¼ 1, 2; j ¼ 1, 2, 3.

As for the kinematical relationships between the strains �z
x, �

z
y, g

z
xy and the angular displacements cx, cy, one

should use [7,8]

�z
x ¼ �x þ z

qcx

qx
ðx2yÞ; gz

xy ¼ gxy þ z
qcx

qy
þ

qcy

qx

� �
. (7)

In view of Eqs. (6) and (7), the bending and twisting moments Mx, My, H and shear forces Qx, Qy will be
written as

Mx ¼
B11h3

12
1� R�11
� � qcx

qx
þ

B12h3

12
1� R�12
� � qcy

qy
; x2y; 122ð Þ,

H ¼
Bh3

6
1� R�ð Þ

qcx

qy
þ

qcy

qx

� �
,

Qx ¼ 2K2hB13 1� R�13
� � qðw� w0Þ

qx
þ cx

� �
x2y; 122ð Þ, ð8Þ

where the shear correction factor is equal to K2 ¼ 5=6 (Reissner) [7], p2=12 (Mindlin) [8], and 2/3 (Uflyand)
[9].

Substituting Eqs. (6) and (8) in the equations of motion [7,8]:

qsx

qx
þ

qtxy

qy
� r

q2u
qt2
¼ 0;

qtxy

qx
þ

qsy

qy
� r

q2v

qt2
¼ 0,

1

h

qQx

qx
þ

qQy

qy

� �
þ

q
qx

sx

qw

qx
þ txy

qw

qy

� �
þ

q
qy

txy

qw

qx
þ sy

qw

qy

� �
þ

q

h
� r

q2w

qt2
¼ 0,

qMx

qx
þ

qH

qy
�Qx � r

h3

12

q2cx

qt2
¼ 0 ðx2yÞ, ð9Þ
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one obtains the following system of integro-partial differential governing equations:

B11 1� R�11
� � q�x

qx
þ B12 1� R�12

� � q�y

qx
þ 2B 1� R�ð Þ

qgxy

qy
� r

q2u
qt2
¼ 0,

B22 1� R�22
� � q�y

qy
þ B21 1� R�21

� � q�x

qy
þ 2B 1� R�ð Þ

qgxy

qx
� r

q2v
qt2
¼ 0,

� 2K2 B13 1� R�13
� � q2ðw� w0Þ

qx2
þ

qcx

qx

� �
þ B23 1� R�23

� � q2ðw� w0Þ

qy2
þ

qcy

qy

� �
 �

�
q
qx

qw

qx
B11 1� R�11
� �

�x þ B12 1� R�12
� �

�y
� 	

þ 2B
qw

qy
1� R�ð Þgxy


 �

�
q
qy

qw

qy
B22 1� R�22
� �

�y þ B21 1� R�21
� �

�x

� 	
þ 2B

qw

qx
1� R�ð Þgxy


 �
�

q

h
þ r

q2w

qt2
¼ 0,

B11h2

12
1� R�11
� � q2cx

qx2
þ

B12h2

12
1� R�12
� � q2cy

qx qy
þ

Bh2

6
1� R�ð Þ

q2cx

qy2
þ

q2cy

qx qy

 !

� 2K2B13 1� R�13
� � qðw� w0Þ

qx
þ cx

� �
�

rh2

12

q2cx

qt2
¼ 0 x2y; 122ð Þ, ð10Þ

where ex, ey, gxy are expressed by Eq. (2).
The mathematical models obtained via the set of Eq. (10), with corresponding boundary and initial

conditions, take into consideration the viscoelastic properties of a plate, as well as shear deformation and
rotatory inertia.

System (10) is a set of nonlinear integro-partial differential equations of the Volterra type with seven
different kernels of relaxation and 21 rheological parameters. Based on this system, one can obtain various
mathematical models of elastic and viscoelastic systems [5,6,10,11].

To derive the equations of motion of an isotropic viscoelastic plate, according to the theories of K.L. and
R.M., and taking into account the propagation of elastic waves, it is possible to use the systems of Eqs. (5) and
(10), respectively. In this case, the elastic constants are E1 ¼ E2 ¼ E, and the kernels of relaxation are
R11ðtÞ ¼ R12ðtÞ ¼ R22ðtÞ ¼ R21ðtÞ ¼ R13ðtÞ ¼ R23ðtÞ ¼ RðtÞ.

Here the problem of the nonlinear vibration of a viscoelastic orthotropic thin rectangular plate is considered
for which the length is a in the x direction, the width is b in the y direction and the uniform thickness is h. The
plate is simply supported, allowing a contour in the z direction under the influence of a constant external
shearing load q. This problem, based on the K.L. and R.M. hypotheses, is described by the system of Eqs. (5)
and (10), respectively.

To fulfill the boundary conditions, displacements are defined as w, w0, u, v and the angular displacements as
cx, cy, with the following definitions:

w x; y; tð Þ ¼
XN

n¼1

XM
m¼1

wnmðtÞ sin
npx

a
sin

mpy

b
,

w0 x; yð Þ ¼
XN

n¼1

XM
m¼1

w0nm sin
npx

a
sin

mpy

b
,

u x; y; tð Þ ¼
XN

n¼1

XM
m¼1

unmðtÞ cos
npx

a
sin

mpy

b
,

v x; y; tð Þ ¼
XN

n¼1

XM
m¼1

vnmðtÞ sin
npx

a
cos

mpy

b
,
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cxðx; y; tÞ ¼
XN

n¼1

XM
m¼1

cxnmðtÞ cos
npx

a
sin

mpy

b
,

cyðx; y; tÞ ¼
XN

n¼1

XM
m¼1

cynmðtÞ sin
npx

a
cos

mpy

b
. ð11Þ

Substituting Eq. (11) into the systems of Eqs. (5) and (10), and applying the Bubnov–Galerkin procedure,
using the dimensionless quantities wkl=h, w0kl=h, ukl=h, vkl=h, ot, qb4=

ffiffiffiffiffiffiffiffiffiffiffi
E1E2

p
h4, RðtÞ=o, RijðtÞ=o, i, j ¼ 1, 2, 3,

and, at the same time, maintaining the previous designations related to the dimensionless parameters ukl, vkl,
wkl, cxkl, cykl, one obtains the system of nonlinear integro-differential equations, describing the process of
nonlinear vibration of viscoelastic orthotropic plates according to the theories of K.L. and R.M., respectively.

The given systems of integro-differential equations will be solved by the numerical method, based on the use
of the quadrature formulae presented by Eshmatov [39]. As kernels of relaxation, we will use the weakly
singular Koltunov–Rzhanitsin kernels in the form:

RijðtÞ ¼ Aije
�bij ttaij�1 0oaijo1; i ¼ 1; 2; j ¼ 1; 2; 3

� �
.

Figs. 1–3 show the results of the dynamic response obtained for a viscoelastic orthotropic plate according to
the K.L. theory. In all considered cases, the numerical convergence of the Bubnov–Galerkin method has been
studied. While determining the deflection time-history, the first five harmonics (N ¼ 5, M ¼ 1) were retained.
The results show that a further increase in the number of components does not greatly influence the amplitude
of vibration of the viscoelastic plate (Fig. 1). Here, curve 1 corresponds to N ¼ 1, curve 2 to N ¼ 3, curve 3 to
N ¼ 5 and curve 4 to N ¼ 7.

The influence of material orthotropicity on plate vibration was investigated when the shearing load was
absent. Parameter DðD ¼ E1=E2Þ defines the degree of orthotropy of the material. The curves in Fig. 2
correspond to various parameters D. Curve 1 corresponds to the case when D ¼ 1; curve 2 corresponds to
D ¼ 2 and curve 3 to D ¼ 3. As the results reveal, an increase in parameter D yields a decrease in the
oscillation.

Fig. 3 displays the results obtained for various kernels of relaxation (curve 1 corresponds to an exponential
kernel; curve 2 to a weakly singular kernel of Koltunov–Rzhanitsyn). As can be seen in the figure, initially
these kernels almost coincide, then, with time, a difference occurs and at time t� ¼ 10, the difference in the
result is �20%. With increasing time, the difference in the results continues to increase further.
3

2

1

0

-1

-2

w
 ⋅ 

10
3

2 4

t*

3

4

2

1

Fig. 1. The numerical convergence of the Bubnov–Galerkin method: 1�N ¼ 1; 2�N ¼ 3; 3�N ¼ 5; 4�N ¼ 7.
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Fig. 2. The influence of the material orthotropicity: 1� D ¼ 1; 2� D ¼ 2; 3� D ¼ 3.
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3
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4 8 12 16 20 24

1
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Fig. 3. Dependence of the deflection on time for various kernels of relaxation: 1—exponential kernel; 2—weakly singular kernel of

Koltunov–Rzhanitsyn.
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Figs. 4–9 present the deflection time-history of a viscoelastic orthotropic plate, oscillating according to the
generalized theory of Reissner–Mindlin, at various physical and geometrical parameters.

The influence of the initial geometric imperfections of the plate on frequency and oscillation amplitude was
studied (Fig. 4, curve 1 corresponds to w0 ¼ 0:3� 10�3, curve 2 to w0 ¼ 0:7� 10�3 and curve 3 to w0 ¼ 10�3).
Note that a change in w0 does not significantly influence the frequency of vibrations. However, with an
increase in the value of the initial geometric imperfections, the amplitude of oscillations increases
proportionally.

The implications of the aspect ratio l ðl ¼ a=bÞ were also investigated. In the case of elongated plates (l ¼ 2
and 3), in contrast to square ones ðl ¼ 1Þ, the frequency of oscillation decays and a considerable phase shift is
observed (Fig. 5, curve 1 is l ¼ 1; curve 2 is l ¼ 2; curve 3 is l ¼ 3).
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Fig. 4. The influence of the initial imperfections: 1� w0 ¼ 0:3� 10�3; 2� w0 ¼ 0:7� 10�3; 3� w0 ¼ 10�3.
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3
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3
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Fig. 5. Dependence of the deflection on time for various values of l: 1� l ¼ 1; 2� l ¼ 2; 3� l ¼ 3.
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In addition, the influence of the static external shearing load q on the behaviour of the viscoelastic plate was
investigated (Fig. 6), where curve 1 corresponds to q ¼ 0; curve 2 to q ¼ 0:01 and curve 3 to q ¼ 0:02. Initially,
the vibrational amplitude does not change substantially, but as time unfolds, with an increase in load
parameter, a proportional increase in the amplitude of vibrations is observed, similar to the previous case.
High values of the static load q correspond to high values of the amplitude of oscillation, and vice-versa.

The influence of the nonlinear properties of the plate material upon its behaviour has also been studied.
Fig. 7 presents diagrams of the deflection time-history for the linear case (curve 1 corresponding to l ¼ 1;
q ¼ 1; w0 ¼ 10�1, curve 3 to l ¼ 1; q ¼ 6; w0 ¼ 10�4 and curve 5 to l ¼ 6; q ¼ 1; w0 ¼ 10�4) and nonlinear
case (curve 2 corresponding to l ¼ 1; q ¼ 1; w0 ¼ 10�1 and curve 4 to l ¼ 1; q ¼ 6; w0 ¼ 10�4 and curve 6 to
l ¼ 6; q ¼ 1; w0 ¼ 10�4). The results demonstrate that, when the vibrations of the viscoelastic square plate are
considered without external loads and initial geometric imperfections, the response corresponding to the linear
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w
 ⋅ 

10
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1

Fig. 6. The influence of the static shearing edge load q: 1� q ¼ 0; 2� q ¼ 0:01; 3� q ¼ 0:02.
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3

Fig. 7. The influence of the nonlinear properties of the plate material: 1� l ¼ 1; q ¼ 1; w0 ¼ 10�1; 3� l ¼ 1; q ¼ 6; w0 ¼ 10�4; 5� l ¼ 6;

q ¼ 1; w0 ¼ 10�4—linear case; 2� l ¼ 1; q ¼ 1; w0 ¼ 10�1; 4� l ¼ 1; q ¼ 6; w0 ¼ 10�4; 6� l ¼ 6; q ¼ 1; w0 ¼ 10�4—nonlinear case.
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and nonlinear problems are rather close, and therefore, the problems can be solved via a linear formulation.
However, with the increase in parameter l, and considering the external static transverse load q and the initial
geometric imperfections w0, a discrepancy in the results for the oscillation amplitudes is observed. This implies
that a nonlinear approach should be applied.

The curves in Fig. 8 correspond to different viscoelastic properties of the material: curve 1 corresponds to the
viscoelastic properties of a material in transverse shear directions (A ¼ A13 ¼ A23 ¼ 0:05; Aij ¼ 0, i, j ¼ 1, 2);
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curve 2 to viscoelastic properties of the material in all directions equally (A ¼ Aij ¼ 0:05, i ¼ 1, 2, j ¼ 1, 2, 3—an
isotropic case); curve 3 corresponds to the case when the material viscoelastic properties are different in all
directions (A ¼ 0:05, A11 ¼ 0:06, A12 ¼ 0:07, A21 ¼ 0:08, A22 ¼ 0:09, A13 ¼ 0:1, A23 ¼ 0:11—an orthotropic
case). Taking the viscoelastic properties of a material into consideration simultaneously in all directions leads
to a larger decay in vibrational amplitude and to a shift of the phases to the right. Moreover, in the case of
viscoelastic properties taken in the transverse shear directions, the results are close to those obtained in the
purely elastic case. This fact reveals that considering the viscoelastic properties of a material only in transverse
shear is not enough to describe the real processes taking place in constructions with uniform viscoelastic
properties. Therefore, in such a case it is necessary to consider the viscoelastic properties of the material in all
directions.
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Fig. 9 shows the results obtained within the K.L. (curve 1) and R.M. one (curve 2) theories for a viscoelastic
orthotropic plate. As the results reveal, both quantitative and qualitative differences in the responses obtained,
as per these two theories, are emerging.
3. Dynamic stability of viscoelastic orthotropic plates within the Kirchhoff–Love and Reissner–Mindlin

hypotheses

Regarding the problem of dynamic stability of viscoelastic plates subjected to the normal Px, Py and the
shear Pxy edge loadings (Fig. 10) in the governing Eqs. (5), (10), one should include these by replacing
PxðtÞðq

2w=qx2Þ, PyðtÞðq
2w=qy2Þ and PxyðtÞðq

2w=qx qyÞ, according to Refs. [10,11,23,24].
Assume that the rectangular plate ða� bÞ is subjected to a dynamic edge load P(t) ¼ vt (v—loading speed)

along the y-direction (Fig. 10). In this case, one should use the systems of Eqs. (5) and (10) with corresponding
initial and boundary conditions. Assuming that the plate is simply supported all over the contour, one should
find the solutions to Eqs. (5) and (10) by representing displacements w, w0, u, v and the angular displacements
cx, cy according to Eq. (11). Substituting Eq. (11) in the systems of Eqs. (5) and (10), and applying the
Bubnov–Galerkin procedure, using the dimensionless quantities:

wkl

h
;

w0kl

h
;

ukl

h
;

vkl

h
; P� ¼

Pffiffiffiffiffiffiffiffiffiffiffi
E1E2

p
b

h

� �2

; q� ¼
qffiffiffiffiffiffiffiffiffiffiffi

E1E2

p
b

h

� �4

; t� ¼
P

Pcr
¼

vt

Pcr
¼

otffiffiffiffi
S
p ¼

P�

P�cr

,

S ¼ P�3cr
pc

ffiffiffiffiffiffiffiffiffiffiffi
E1E2

p
h3

vb4

� �2

; P�cr ¼
Pcrffiffiffiffiffiffiffiffiffiffiffi
E1E2

p
b

h

� �2

¼
p2

6ð1� m12m21Þ
Z;

ffiffiffiffi
S
p

o
RðtÞ;

ffiffiffiffi
S
p

o
RijðtÞ; i; j ¼ 1; 2,

where c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E1E2

p
=r

p
; o ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2

ffiffiffiffiffiffiffiffiffiffiffi
E1E2

p
h2P�cr=ðrb4

Þ

q
and, at the same time, maintaining the previous

designations related to the dimensionless ukl, vkl, wkl, cxkl, cykl, one obtains the system of nonlinear
integro-differential equations, describing the process of dynamical stability of viscoelastic orthotropic plates
according to the theories of K.L. and R.M., respectively.

Figs. 11–16 show results of the dynamic response obtained for a viscoelastic orthotropic plate according to
the K.L. theory. Here, as in Ref. [11], the criterion for determining the critical time and the critical load was
the condition that the deflection should be smaller than the plate thickness that is used. To determine the
stability of the plate, we use the dynamic amplification factor KD, which is equal to the ratio of the dynamic
critical load to the Euler static load (i.e. the dynamic critical load being KD times greater than the Euler
static load).
y

a

b

Px (t)

Py (t)

Pxy (t)
x

Fig. 10. Model geometry and loading.
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Fig. 11 shows a square plate ðl ¼ 1Þ with the initial geometric imperfection w0 ¼ 10�4. Assuming that a load
q is absent, curves 1 and 2, corresponding to ðS ¼ 1Þ and curves 3 and 4 to ðS ¼ 10Þ, are associated with the
elastic and viscoelastic cases, respectively. The abscissa corresponds to the dimensionless parameter t�,
previously defined, and the ordinate axis is the dimensionless deflection w. The amplification factor KD in the
elastic and viscoelastic cases, when S ¼ 1, is equal to KD ¼ 4:8 and 4.6, respectively, and when S ¼ 10, KD ¼ 3
and 2.85, respectively. The result obtained shows that considering the viscoelastic characteristics of a material
leads to a decrease in the critical load.

Fig. 12 shows an example of the w function for various values S. When S ¼ 0.1, 0.2 and 0.5, the ‘‘critical’’
values of KD in the viscoelastic case will be 7.7, 7.6 and 5.4, respectively (curves 2,4,6), and for the elastic case,
8.0, 7.9 and 5.6 (curves 1,3,5), respectively. Note that the parameter S is inversely proportional to v. The
diagram shows that as the loading speed v increases, the value of the KD factor increases.
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The influence of an additional statical shear load on the behavior of a square plate is presented in Fig. 13. At
q ¼ 1, the value of KD is 3.9 in the elastic case (curve 3), and 3.8 in the viscoelastic case (curve 4), while at q ¼ 0
it is equal to 4.8 (curve 1) and 4.6 (curve 2), respectively.

Fig. 14 shows diagrams of the w curves for cases of a viscoelastic square and elongated plate. The results
show that for l ¼ 2, the corresponding values of KD are equal to 5 (curve 3), in the elastic case, and 4.9 in the
viscoelastic case (curve 4). For l ¼ 1, KD corresponds to 4.8 (curve 1) and 4.6 (curve 2), respectively. When
comparing these figures for l ¼ 1 and 2, we can conclude that the KD values determined for a square plate in
the viscoelastic case could be carried over, with insignificant error, to plates of a different configuration.

Fig. 15 shows the influence of the initial geometric imperfection w0. Diagrams for w, corresponding to
w0 ¼ 10�6, 10�4 and 10�2, are displayed. For w0 ¼ 10�6, 10�4 and 10�2, the values of KD in the viscoelastic
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case equal 5.7, 4.65 and 3.1 (curves 2,4,6), respectively. In the elastic case, KD equals 5.9; 4.8; 3.25, respectively
(curves 1,3,5).

The influence of orthotropy of the material on the stability of the plate is presented in Fig. 16. An increase in
D, which determines the degree of orthotropy (curve 1 corresponding to D ¼ 1; curve 2 to D ¼ 1:5 and curve 3
to D ¼ 2), yields a delayed increase in deflection and, correspondingly, to an increase in the critical value KD.
Similar results were observed in experiments carried out with structures manufactured from composite
materials [11], which again confirms the validity of the chosen method and, correspondingly of the obtained
results.

Figs. 17–20 present the deflection time-history for a dynamical stability of a viscoelastic orthotropic plate
according to the generalized theory of Reissner–Mindlin at various physical and geometrical parameters.

Fig. 17 represents the dynamic response of a square plate ðl ¼ 1Þ with the initial geometric imperfection
amplitude w0 ¼ 10�4 when load q is absent. Curve 1 in this diagram corresponds to the case when viscoelastic
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features are not taken into consideration (purely elastic case). Curve 2 corresponds to the results obtained
when an exponential kernel of relaxation is considered, while curve 3 is the case with a Koltunov–Rzhanitsyn
kernel. Analysis shows that, although there is no great difference in KD in these cases, a qualitative difference
is, however, observed.

The influence of parameter bij (i ¼ 1, 2; j ¼ 1, 2, 3) on the behaviour of the plate has been also analysed. The
results (not displayed) here reveal that, as in case of vibration, bij within the interval 0obijo1 does not greatly
affect the critical time and load.

Fig. 18 shows the deflection time-history w of the viscoelastic plate for various values of the geometric
parameter d (defined as the ratio between width and thickness of the plate). When d ¼ 10, 20 and 30 (curves 1, 2, 3,
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respectively), the ‘‘critical’’ value KD is 4.1, 4.4 and 4.5, respectively. Note that an increase in d leads to a shift
of all curves to the right, i.e. to a large value of t�, hence, to an increase in the amplification factor.

In Fig. 19, curve 1 corresponds to the case where the viscoelastic properties of the material are not taken
into consideration (A ¼ Aij ¼ 0, i ¼ 1; 2; j ¼ 1; 2; 3—purely elastic case), curve 2 to the case (frequently used
by many researchers [7,8] in studying viscoelastic orthotropic constructions Aij ¼ 0, A ¼ A13 ¼ A23 ¼ 0:1,
i; j ¼ 1; 2) when viscoelastic properties of the material are taken into consideration only in transverse shear,
and curve 3 relates to the case when viscoelastic properties of materials are taken into account equally in all
directions ðA ¼ Aij ¼ 0:1; i ¼ 1; 2; j ¼ 1; 2; 3Þ. As can be clearly seen, the results for the purely elastic case
almost coincide with those obtained for viscoelastic properties considered only in transverse shear.
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Considering viscoelastic properties in all direction yields an earlier increase in deflections and, hence, a
decrease in the critical values of KD.

Fig. 20 compares the results obtained through various theories: K.L. model (curve 1) and M.R. theory
(curve 2). The ‘‘critical’’ value of KD, corresponding to the K.L. models, equal 8.8. Considering this problem
via the M.R. theory, the critical value is 8.5.
4. Conclusions

The study of the nonlinear behaviour in vibrations and stability of orthotropic viscoelastic plates reveals a
number of facts.

For a more comprehensive investigation of viscoelastic structures, it is necessary to take into account the
viscoelastic properties of material, not only in transverse shear, but in all other directions.

For the kernels of relaxation, it is necessary to use Koltunov–Rzhanitsyn type kernels containing a sufficient
number of rheological parameters, validated via experiments.

Depending on the geometrical and physical parameters of the plates, it is necessary to use appropriate
theories (both in linear and nonlinear formulations), i.e. the classical K.L. and R.M. theories, which agree with
experimental predictions. According to the results, the Reissner–Mindlin theory is more acceptable as it takes
into account both transverse shear deformation and rotatory inertia.
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